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ABSTRACT: An arc is a homeomorphic path, which is a continuous function in a space. In this paper, we
have studied arcwise connectivity for the spaces which have closed connected subsets in a way that, these are sepa-

rated by disjoined open sets.
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INTRODUCTION: We start by briefly introducing
the context. Throughout this paper X denotes a non
degenerate compact connected metric space. The class
of all spaces of non-empty closed connected subsets
of X with Hausdorffness in metric function is repre-
sented by A(X).

Preliminaries: An arc is a homeomorphic path, which
is a continuous function in a space. Let Z denote the
space and a continuous function a: [0,1] —» Z a path
in it. It is apparent that the existence of a path « in a
Hausdorff space implies the existence if an arc g such
that B(0) = «(0), 5(1) = a(1) and the range of g is
contained in the range of a. An order arc A(X) is an
arc a in A(X) which is a monotone function where-
from either a(t) c a(t’) whenever t <t or a(t) o
a(t") whenever t > t'. Our endeavor is to prove:

Theorem 1: If A;,A,, ..., A, are distinct members of
A(X) and each of the sets A(X) — A4; is arcwise con-
nected, then A(X) — C{4,,..,A,} is arcwise con-
nected.

The earlier proofs pose a question. If I3 is a compact
totally disconnected subset of A(X) and if A(X) — A is
arcwise connected for each A € 3, does not follows
that A(X) — 3 is arcwise connected? To answer these
questions, we give the following lemmas:

Lemma 1.1: If A and B belong to a class A(X) and if
A is contained in B, then there exist an order arc a in
A(X) such that «(0) = A and «(1) = B.

Proof - The proof is obvious.

Lemma 1.2: If a is a path in A(X) and g is defined on
[0,1] by B(t) = U{a(s):0 < s < t},
then £ is a path in A(X).
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Proof - S takes its values in A(X) by (1.2) of [5]. The
continuity of 8 is obvious.

Lemma 1.3: Suppose Y, ,Yp,and A are distinct
members of A(X) and a is an arc in A(X)—
{v;, Y.}, such that a(0) —A # ¢ # a(1) — A,
then there is an arc g in A(X) —{Y;, ,Y,} such
that £(0) = «(0) and £(1) = a(2).

Proof - Without loss of generality, we may suppose
that there exist k € {0,1,...,n}, such that Y; c A4, if
i<kandY;—A =+ ¢, ifi>k.

The lemma is immediate, if a(t) # A, V¢t€
[0,1], so we suppose a(t;) = A, where 0 <t; < 1.
Now we define

to =inf{t <t;:t <s <t;, thena(s) c A}
t, =sup {t = t;:t; <s <t then a(s) c A}.

Since a(0) and a(1) each contain points outside A,
we see that 0 < t, < t; <t, <1. Further, there ex-
ists an open set U, such that U ny; # ¢ for each
i>k and UnA=¢ and there exist e >0 and
€ >0with0 <ty —e€,t, +€ <1 and satisfying

a(to—e) —A+0 #a(t, +€) — A

If ty—e<t<t, then a(t)nU=¢ and if
t,<t<t,+¢, then a(t)nU = ¢. At this point,
_ tyte'+1

lett; = and define
a(t), if0<t<t,+¢€,
a(t) = qa(t, +€'), ift,+e <t <t
a2t — 1), if t<t<1l.

Thus & is a path which traces the same arc as «, but &
is situated on the point a(t, + €') over the interval
[tz + EI, t3]
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We now define:

(
p(e) =1

a(t),
if0<t<ty,—¢€,
U{a(s):ty —s <s <t},
if(to—€) <t<(t,+¢€)

On the interval [t, + €', t3] where B is our desired
path, which is a decreasing order arc from B(t, +¢€')
to a(t, +€') and B(t) = a(t).

We now see that, lemma 1.1 suggests that B[t, —
€,t, +€'] is a path in A(X) and hence g is a path in
A(X). Clearly, B(0) = a(0) and (1) = a(1). Since
a(ty —e) — A and a(t, +€') — A are non-empty, it
follows that B(t) — A is non-empty, if t, —e <t <
t;. Consequently, all values of B(t) are distinct from
A and Y; (i < k). Moreover, since a(t)nU =¢ in
[to —€,t, +€'], we see that B(t) nU = ¢ on the
same interval and hence all the value of B(t) are dis-
tinct from Y;(i > k). This completes the proof of the
lemma.

We now claim that lemma 1.3 is true when
,Y,.} is replaced by an arbitrary closed subset

Now in order to prove the main result in theo-
rem 1, we consider first the case when all the sub con-
tinua A; are proper.

Theorem 2: If A4,... ,A, are distinct members of
A(X) — X and if each of the sets A(X) — {4;} is ar-
cwise connected, then A(X) — {44, ... , A} is arcwise
connected.

Proof - If n =1 then the proof is trivial, so we as-
sume n > 1. Now applying induction, we say that the
theorem is true for n — 1 inembers of A(X) — {X}. It
suffices to show that, if k € A(X) — {4y, ... ,An, X},
then there is a path g in A(X) —{4;,... ,A,} with
B(0) =K and (1) = X.

Case 1: There exists i such that K — A; # ¢. We may
assume i = 1. Again, by the application of induction
theory, there is an arc a in A(X) — {4,, ... ,A,}, such
that «(0) = K and a(1) = X. By lemma 3.3 exis-
tence of B is proved, which is the desired path.

Case 2: K c{A; N .. NA,}. We may assume i = 1.
By the induction theorem, there is an arca in
AX)—{4,,... ,A,_1}, such that «(0)=K and
a(1) = A,. Since a(1) — A; is non-empty, there ex-
ists t; <1, such that a(t;) —A; # @; moreover,
a[0,t,] lies in A(X) — {A4,, ... ,A,,}. By case 1, there is
a continuation y in A(X) —{4,,... ,A,}, such that
y(0) = a(t) and y(1) = X. If we define
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a(2t,t),

IA

t

IA

if
if

Then it can be easily verified that £ is a path from K
to X in A(X) —{4;,... ,4,}.

Proof of Theorem 1: Restricting the conditions in
the proof of the theorem 2, we assume further that
A, =X. Let K, and K; be distinct members of
A(X) - {All lATl—llX}-

By theorem 2, there is an arcf in A(X)—
{A1, ... ,Ay_1} with B(0) = K, and (1) = K;. Then
either B is the desired path or there exists t; with
B(t;) = X; in the latter case, there are t, <t; and
t, > t;, such that

B(to) — Ay # ¢ # B(t;) — Ay
and both pB[0,t,] and Plt,,1]
{All lATl—llX}-

By the induction theory, there is an arc a in A(X) —
{Az, .. \Aq_1, X} with a(0) = B(t,) and a(l) =
B(t,) and by lemma 1.3, we may assume a in

B(t) =
y(2t — 1),

BN

0
1<t
5 S

IA

lie in A(X) —

AX) —{4,,... ,A,_1, X}. If we define y by
[ BB, ifO<t<
= 1
v(®) | a(3t—1), if3<t<2/3

\BBt,(1—t) +3t—2), if 2/3<t<1.

Then it is easily verified that y is a path in A(X) —
{A;, ... ,Ap_1, X} with y(0) = K, and y(1) = K;.

CONCLUSION: On account of the usefulness, gen-
eral character and significance in technical applica-
tions, it is hoped that, this research paper shall provide
future scope for researchers and students in the field
of connectivity in hyperspaces.
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