
                                                                                                              Asian J.  Adv. Basic Sci.: 2018, 6(2), 20-26 
                                                                                   ISSN (Print): 2454 – 7492 

                                                                                      ISSN (Online): 2347 – 4114   
                                                                www.ajabs.org                                                          

20 
 

INTRODUCTION: Liu et. al., 20161 have used 
hybrid regularizes-based adaptive anisotropic 
diffusion method for image denoising. They used the 
method to eliminate the stair casing effect for total 
variation filter and synchronously avoid the edges 
blurring for fourth order PDE filter. They use non–
linear method which have a good balance between 
noise removal and edge preserving. They proposed 
an adaptive diffusion model for image denoising 
which is composed of a hybrid regularization. 
Experiment show that proposed model can preserve 
important structure such as edge and corner. 

Taeg Sang Cho. et al.,20112 have given, the image 
patching demonstrated that the patch transform can 
be used in several image editing operations. The 
patch transform provides an alternative to an exten-
sive user intervention to generate natural looking ed-
ited images. It has to specify two inputs to recon-
struct an image: the bounding box that contains the 
object of interest and the desired location of the 
patches in the bounding box. The algorithm is robust 
to changes in the size of the bounding box. That 
found it the best to fix as small a region as possible if 
the user wants to fully explore space of natural look-
ing images. However, if the user wants to generate a 
natural-looking image with a small number of  itera-
tions, it’s better to fix a larger region in the image. 
The algorithm is quite robust to changes in the rela-

tive location of bounding boxes, but the user should 
roughly place the bounding boxes in such a way that 
a natural looking image can be anticipated.  

After this has modified the patch statistics of the 
original image, or has constrained some patch posi-
tions, It want to perform an inverse patch transform, 
piecing together the patches to form a plausible im-
age. To accomplish this, we define a probability for 
all possible combination of patches. In a good 
placement of patches, (1) adjacent patches should all 
plausibly fit next to each other, (2) each patch should 
not be used more than once (in solving the patch 
placements, we relax this constraint to each patch 
seldom being used more than once), and (3) the us-
er’s constraints on patch positions should be main-
tained. Each of these requirements can be enforced 
by terms in a Markov Random Field (MRF) probabil-
ity. 

Jose M. Celaya-Padilla et. al., 20123 have demon-
strated the texturing patching process includes a vari-
ety of issues such as access, sampling, and filtering, 
texture patching is the process to translate one texture 
to an image, this is commonly used to extract objects 
from an scene, and fill full the empty area with some 
texture that blend with the rest of the image, this can 
be found widely on animated movies, videogames 
and digital content. The mapped image, usually rec-
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tangular, is called a texture map or texture, and is 
used to generate a new texture, of N by M size, 
which fill full the image, in order to do that, we de-
veloped and strategy to overcome this problem, first 
we find the area that we want to fill, in order to do 
that, we search for the specific area of interest, in this 
case, we arbitrary edited an image to draw a square 
figure, with a non common color, such as Cyan, or 
Magenta, this area is showed in (figure 1), once the 
area is detected, the dimensions of the local area are 
obtained and used to calculate the number of differ-
ent mask’s to be extracted, this is done by diving the 
area’s high by the mask high, once we know the 
number of mask’s we extract a maskj of the adjacent 
area, this mask, will work as seed, to generate a tex-
ture area, after the new texture is generated. 

 
Figure 1: Structure completion for patch Detection. 

 
Figure 2: Image generated by the texture synthesis 
algorithms using 5 pixels block (a) Sample texture; 

(b) Random square blocks; (c) proposed.3 

 
Figure 3: Test images (a) Original Image; (b) Ed-

ited input image. 
David Harbater, 19994 has evoluted method the rigid 
approach to patching is often regarded as more intui-
tive than the formal approach, its foundations are less 
well-established. But constructions involving the 
formal approach have tended to be technically more 
cumbersome. The purpose of the current paper is to 

build on previous formal patching results to create a 
framework in which such constructions are facilitat-
ed.  

In the process we prove a result asserting that singu-
lar curves over a field that can be thickened to curves 
with prescribed behavior in a formal neighborhood of 
the singular locus, and similarly for covers of curves. 
Afterward, we obtain applications to fundamental 
groups of curves over large fields. 

In, Idan Ram, 20135 proposed work took a different 
approach, and proposed a denoising scheme which 
consists of reordering the noisy image pixels to what 
should be a 1D regular signal, and applying it linear 
smoothing filters. Then applied several permutations 
to the image, each was obtained by calculating dis-
tances between the noisy image patches, and ordering 
them such that they were chained in the shortest pos-
sible path, essentially solving the traveling salesman 
problem. They note that similar permutations were 
employed in Generalized Tree-Based Wavelet Trans-
form and Redundant Wavelets on Graphs and High 
Dimensional Data Clouds to construct image-
adaptive wavelet transforms, which were used for 
image denoising. First, start by calculating K permu-
tation matrices Pk from the image patches xj .Then 
apply these matrices to z and obtain    ݖ௞

௣ = ௞ܲݖ . We 
wish to modify the NL-means algorithm [1] so it will 
make use of these signals. The NL-means algorithm 
estimates each pixel ݕො[݊] as a weighted average of 
pixels in Z, which reside in a square neighborhood  
ܵ௡ே ௅  surrounding z[n]. The weights are determined 
by the distances between the patch surrounding the 
estimated pixel and the patches surrounding the pix-
els in 

[݊]ොݕ =  
1
௡ܦ

 ෍ ௡,௠ݓ[݉]ݖ
௠ఢௌഏಿ ಽ

 

Where, the weights ݓ௡,௠  and ܦ௡ satisfy. 

௡,௠ݓ = exp ቆ
‖ܺ௡ − ܺ௠‖ଶ

ߛ݃
ቇ ௡ܦ, =  ෍ ௡,௠ݓ

௠∈ௌ೙ಿ ಽ

. 

Let ௞ܲ denote a vector containing the permutation of 
the pixel indices applied by the matrix ௞ܲ. 

 It next use the permutations to construct for each 
pixel ݖ[݊] a neighborhood ܵ௡. Let ݆௡௞  be the index of 
the pixel ݕ[݊] in ݕ௞

௣, i.e. ݕ௞
௣[݆௡௞] = ௞ݕ As .[݊]ݕ 

௣ 
should be smooth, ݕ௞

௣[݆௡௞]  should be close to its Q 
neighboring pixels, and therefore it chooses to esti-
mate it from their noisy versions. Thus, first define 
the neighborhood ܵ௞ ,௡ of ݖ[݊] as the set of indices. 



[(Asian J. Adv. Basic Sci.: 6(2), 2018, 20-26) Image Patching for Image Denoising: A Review] 

22 
 

ܵ௞,௡ = ൜ ௞ܲ ൤݆௡௞ −
ܳ
2
൨ , … . . , ௞ܲ ൤݆௡௞ +

ܳ
2
൨ൠ 

Then define the total neighborhood of    ݖ[݊] as 

ܵ௡ = ራܵ௞,௡

௄

௞ୀଵ

 

image denoising algorithm by replacing the neigh-
borhood  ܵ௡ே௅   with ܵ௡ in equation (4) and (5). As can 
be seen, unlike the algorithm in13 we do make use of 
the distances between the patches, and we do not re-
quire a preliminary filter-learning stage. The algo-
rithm13 proposed in Image processing using smooth 
ordering of its patches had two main limitations: 1) 
the distances between the patches were not employed 
in the denoising scheme, although they carry addi-
tional information regarding patch similarity; 2) the 
smoothing filters required a Patch classification the 
image differently than areas with edges or texture. It 
first divide the patches into two sets: Ss - which con-
tains smooth patches, and Se – which contains patch-
es with edges or texture. Let std(xi) denote the stand-
ard deviation of the patch xi and let C be a scalar de-
sign parameter. Next divide the image z into two sig-
nals: zs - which contains the pixels corresponding to 
the smooth patches, and ze - which contains the pix-
els corresponding to the patches with edges and tex-
ture. Then apply the denoising scheme described 
above to the signals zs and ze, with the sets of patches 
Ss and Se, and two sets of parameters Qs, γs and Qe, γe 
for the NL-means, respectively. Then recover the two 
signals  ݕොs and ݕොe from zs and ze, respectively, and 
obtain the final estimate ^y by returning the pixels in 
each signal to their original place in the image can-
vas. separate training set to be learned from. 

The Inverse Patch Transform: After the user has 
modified the patch statistics of the original image, or 
has constrained some patch positions, we want to 
perform an “inverse patch transform”, piecing to-
gether the patches to form a plausible image. To ac-
complish this, we define a probability for all possible 
combination of patches. 

In a good placement of patches,  

(1) adjacent patches should all plausibly fit next to 
each other,  

(2) each patch should not be used more than once (in 
solving the patch placements, we relax this constraint 
to each patch seldom being used more than once), 
and  
(3) the user’s constraints on patch positions should be 
maintained.  

Each of these requirements can be enforced by terms 
in a Markov Random Field (MRF) probability. 

Nearest Patch Matching: Nearest patch search algo-
rithms can be roughly classified into two categories: 
the exact nearest patch matching and approximate 
nearest patch matching. PCA Trees, K-means, are 
often used to achieve exact nearest patch matching. 
Currently, there are several methods, such as Kd-
Tree10, ANN, TSVQ and Vantage Point Trees, that 
can perform both exact and approximate nearest 
patch matching. All these methods apply hierarchical 
tree structure to accelerate searching. 

Some other methods such as local propagation meth-
od, k-coherence technique and randomized corre-
spondence algorithm only perform approximate 
nearest patch matching. These approximate methods 
find the approximate nearest patch in local regions 
based on local coherence assumption. The perfor-
mance of the nearest patch matching method usually 
depends on several factors: including image size, 
patch size, the number of nearest patches, search 
range, and the number of input images. The kd-tree 
based matching is one of the most widely-used algo-
rithms for finding the nearest patch. Although it is 
easy to create and efficient for range query, the kd-
tree only works well for low-dimensional data. Using 
kd-tree, the number of searched nodes increases ex-
ponentially with the space dimension. 

The dimensionality of the search space: the number 
of splits tends to grow approximately exponentially 
with the dimensionality. However, in the application 
presented here, this dimensionality is always fixed at 
four. The distribution of the patches in the images: 
the number of splits tends to decrease strongly if 
good matches are present. The number of matching 
labels between R and S: fewer matches allow to re-
duce the match lists and to find the solution with 
fewer splits. The accuracy constraints imposed: if a 
more precise solution is needed, the number of splits 
increases. The Noises contained in an image.  

Image models enable us to systematically develop 
algorithms for accomplishing a particular image-
related task. 

 Depending on the specific task (e.g., recognition vs. 
compression), we often face two classes of image 
models-descriptive and generative often associated 
with the tasks of image analysis and synthesis respec-
tively. Descriptive models focus on the extraction of 
distinctive features from a given image such that they 
can facilitate the task of classifying the image into 
one of several classes.14 Whether a plausible image 
can be reconstructed from those features is irrelevant 
to descriptive models. 
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 By contrast, generative models do preserve the “in-
formation” in an image and their synthesis capability 
lends them more desirable for the task of compres-
sion and restoration than that of classification and 
recognition. However, recent trend in sparsity-based 
recognition has challenged the above common per-
ception about generative models - they could achieve 
highly competent performance in recognition tasks 
even though the capability of synthesis is not neces-
sary. 

The influential paradigm is writer’s own observation 
that the design principle has historically followed 
two competing yet complementary paths: the con-
struction of a signal-independent dictionary (or basis 
functions) and the learning of from training data (and 
therefore signal-dependent). Both lines of attacks 
have turned out fruitful and it has often been found 
that two approaches end up with dictionaries of simi-
lar characteristics and algorithms of comparable per-
formance. 

The patch transform represents an image as bag of 
overlapping patches sampled on a regular grid. This 
representation allows users to manipulate images in 
the patch domain, which then seeds the inverse patch 
transform to synthesize a modified image. Possible 
modifications in the patch domain include the spatial 
locations of patches, the size of the output image, or 
the pool of patches from which an image is recon-
structed. When no modifications are made, the in-
verse patch transform reduces to solving a jigsaw 
puzzle. The inverse patch transform is posed as a 
patch assignment problem on a Markov random field 
(MRF), where each patch should be used only once, 
and neighboring patches should fit to form a plausi-
ble image. It find an approximate solution to the 
MRF using loopy belief propagation, introducing an 
approximation that encourages the solution to use 
each patch only once.  

The image reconstruction algorithm scales well with 
the total number of patches through the use of a label 
pruning method that finds loops of patches that are 
likely to fit together. In addition, structural misa-
lignment artifacts are supressed through a patch jit-
tering scheme that spatially shifts the assigned patch-
es by a sub-patch size. 

Robust Patch regression: It is well-known ߡଵ minimi-
zation is more robust to outliers than  ߡଶ minimiza-
tion. A simple argument is that the unsquared residu-
alsฮܲ − ௝ܲฮ

ଶ
 are better guarded against the aberrant 

data points compared to the squared residualsฮܲ −
௝ܲ‖ଶ. The former tends to better suppress the large 

residuals that may result from outliers. This basic 
principle of robust statistics can be traced back to the 

works of von Neumann, Tukey17, and Huber18, and 
lies at the heart of several recent work on the design 
of robust estimators e.g., see15, and the references 
therein. A natural question is what happens if we re-
place the regression ߡଵ  In general, one could consider 
the following class of problems: 

෠ܲ௜ = arg minܲ   ෍ ௜௝ݓ
௝ఢௌ(௜)

ฮܲ − ௝ܲฮ
௣

 

The intuitive idea here is that, by taking smaller val-
ues of ܲ, we can better suppress the residuals 

ฮܲ − ௝ܲฮ
ଶ
 induced by the outliers. This should make 

the regression even more robust to outliers, compared 
to what we get with ܲ = 1. We note that a flip side of 
setting ܲ < 1 is that (6) will no longer be convex (this 
is essentially because t is convex if and only if ܲ 
≥1), and it is in general difficult to find the global 
minimizer of a non-convex functional. However, we 
do have a good chance of finding the global optimum 
if we can initialize the solver close to the global op-
timum. The purpose of this note is to numerically 
demonstrate that, for all sufficiently large σ, the ˆu 
obtained by solving (6) (and letting ݑො௜ to be the cen-
ter pixel in ෠ܲ௜) results in a more robust approximation 
of f as p → 0, than what is obtained using NLM. 
Henceforth, we will refer to (6) as Non-Local Patch 
Regression, where p is generally allowed to take val-
ues in the range (0, 2). 

The accuracy of estimating the parameters is depend-
ent on the strength of the noise corrupting the image. 
Noise affects different parameter estimation steps 
differently. The moment estimation steps are depend-
ent on the ability of the clustering step to classify 
structurally similar patches. Although the LARK fea-
tures are quite robust, errors in clustering due to 
noise cannot be fully avoided. This is demonstrated 
in Fig. 4 where differences in clustering the noisy 
and noise-free images are apparent.  

 
Figure 4: Clustering of Barbara image into 5 clus-
ters based on geometric structure of patches. Clus-

tering is performed with features calculated from (a) 
clean image, and (b) noisy image of noise standard 

deviation. 

Note how the kernel features can capture structural 
information and thereby properly cluster majority of 
patches even in the presence of noise. 
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௜ܹ௝   =  ଵ
ఙమ   ݁݌ݔ ቊ

ฮ௒೔ି௒ೕฮ
మ

ℎమ
ቋ 

Although outliers do influence the moment estimates, 
the process that is most sensitive to noise is the 
weight calculation of above. Identifying 
photometrically similar patches becomes challenging 
in the presence of strong noise, which in turn influ-
ences the similarity measure calculation of Eq. 
above.  

To alleviate such detrimental effects of noise, pre-
filter the image once before the parameters of the 
proposed framework are learned. Note that such pre-
filtering is quite typical of competing approaches, 
and is necessary only for strong noise. For the pre-
processing step, apply algorithm once on the input 
noisy image with a reduced noise variance estimate 
to ensure that finer details are not lost. The necessary 
filter parameters are then learned from the resultant 
noise-suppressed image. 

This maximization will be a complex task for most 
functional forms of Q. In many applications, such fits 
of parameters are carried out iteratively and heuristi-
cally, which involves the risk that the results found 
are only locally optimal solutions. Other methods 
include randomized approaches like e.g. random 
sample consensus18 employ a branch-and-bound 
technique9 to perform the maximization. This algo-
rithm guarantees to find the globally optimal parame-
ter set by recursively subdividing the parameter 
space and processing the resulting parameter hyper-
rectangles in the order given by an upper bound on 
the total quality.  

Moreover, with small modifications, the algorithm 
allows us to efficiently determine the k best matches, 
not only the best match. (a), (c) show the region of 
the search space that is considered and (b),(d) show 
possible matchings of a model to points in the image 
for transformations with parameters contained in the 
region. (Note that these are not computed explicitly 
in the algorithm, but an upper bound of the quality 
for all possible matches is determined instead.) After 
splitting the region (c), (d), fewer transformations are 
possible and the upper bound for the quality of a 
match is recomputed accordingly. This process is re-
peated for each of the subregions. Figure 5 shows an 
illustration of a subdivision of the transformation 
space and Figure 6 shows the subdivisions occurring 
during an actual run of the algorithm. 

The number of times the initial region is split before 
a solution is reported. The interactions between the 
following variables influence the dimensionality of 
the search space: the number of splits tends to grow 
approximately exponentially with the dimensionality. 

However, in the application presented here, this di-
mensionality is always fixed at four. The distribution 
of the patches in the images: the number of splits 
tends to decrease strongly if good matches are pre-
sent. The number of matching labels between R and 
S: fewer matches allow to reduce the matchlists and 
to find the solution with fewer splits. The accuracy 
constraints imposed: if a more precise solution is 
needed, the number of splits increases. 

 
Figure 5: Illustration of the subdivision step within 

the RAST algorithm. 

 
Figure 6: Illustration of the explored space during 

an actual run of the RAST algorithm. 

Paolo Piro et. al., 200911propose a new descriptor 
based on Sparse Multiscale Patches. In short,they 
integrate using probability distributions the local in-
formation brought by the SMP. The key aspects of 
these descriptors are the following: 

– A multiscale representation of the images; 

– Inter/intrascale patches that describe locally the 
structure of the image at a given scale; 

– A sparse repartition: most of the energy is concen-
trated in a few patches.  

Note that the occurrence in different parts of an im-
age of similar patches of spatially neighboring pixels 
has been exploited in image processing.14–16 Here the 
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concept is used for multiscale coefficients as pro-
posed in.17 The visual content of images is represent-
ed by patches of multi-resolution coefficients. The 
extracted feature vectors are viewed as samples from 
an unknown multidimensional distribution. The 
multiscale transform of an image being sparse, a re-
duced number of patches yields a good characteriza-
tion of the distribution. They estimate the similarity 
between images by a pseudo-distance (or measure) 
between these multidimensional probability density 
functions. Also proposed to use the Kullback-Leibler 
(KL) divergence as a similarity measure that quanti-
fies the closeness between two probability density 
functions. Such measure has already shown good 
performances in the context of image retrieval.13 It 
has already been used for the simple case of 
parametrized marginal distributions of wavelet coef-
ficients,18 assuming independence of the coefficients. 
 In contrast, it defines multidimensional feature vec-
tors (patches) that capture interscale and intrascale 
dependencies among subband coefficients. These are 
better adapted to the description of local image struc-
tures and texture. In addition, for color images, we 
take into account the dependencies among the three 
color channels; hence patches of coefficients are also 
interchannel. This approach implies to estimate dis-
tributions in a high-dimensional statistical space, 
where fixed size kernel options to estimate distribu-
tions or divergences fail. Alternatively the proposed 
to estimate the KL divergence directly from the sam-
ples by using the k-th nearest neighbor (kNN) ap-
proach, i.e. adapting to the local sample density. 
An RBM consists of a layer of binary stochastic “vis-
ible” units connected to a layer of binary, stochastic 
“hidden” units via symmetrically weighted connec-
tions. A joint configuration, (v, h) of the visible and 
hidden units has an energy. 

Patch based Hierarchical PCA (PHPC): This ap-
proach aims to provide an intermediate solution be-
tween local and global PCAs, which is less time con-
suming than the PLPCA and is more adapted to local 
regions than the PGPCA. The idea is to create hybrid 
bases that contain elements characterizing 
globalfeatures of the image along with elements 
characterizing localized features. 

This strategy allows us to combine the advantages 
both of the PGPCA, to accurately estimate axes 
which explain most of the variance, and of the 
PLPCA to model the behavior of rare patches.To ex-
tract the first principal axes of  and to include them in 
all the local bases. The remaining axes will be com-
puted from the residual patches, i.e., the patches be-
ing the projector onto the subspace spanned by the 
axes.  In practice small and chosen between one and 

five. The fact that the remaining axes are not kept is 
justified by the observation that, as mentioned above, 
they are irrelevant to model the underlying signal 
since they look like randomly drawn vectors from the 
orthogonal. 

 
CONCLUSION: The main limitation identified is 
that the control over the patch location is inherently 
limited by the size of the patch, which can lead to 
visible artifacts. If patches are too small, the patch 
assignment algorithm breaks down due to exponen-
tial growth in the state dimensionality. A simple ex-
tension to address this issue is to represent the image 
with overlapping patches, and generate the output 
image by quilting these patches. It could define the 
compatibility using the seam energy. Since seams can 
take arbitrary shapes, fewer artifacts is expected. An-
other limitation recognized is the large amount of 
computation. To enable an interactive image editing 
using the patch transform, both the number of itera-
tions and the amount of computation per iteration 
should be reduced. The overlapping patch transform 
framework may help in this regard as well since larg-
er patches (i.e. less patches per image) can be used 
without degrading the output image quality.  
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