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INTRODUCTION: Recently H. L. Guang and Z. 
Xian introduced a new metric space known as cone 
metric spaces. Subsequently A. Azam., M. Arshad and 
I. Beg have given the idea of cone rectangular metric 
space. We will introduce new results on cone rectan-
gular metric space.   
Let E is a real Bench space and P is a subset of E. P is 
called a cone if and only if it satisfies the following 
conditions 
i) P is closed, non empty and P  {0}  
ii) a, b  R and a, b > 0.  u, v  P  a u + b v  P 
iii) u  P and - u  P  u = 0. 

Definition: Let X be a nonempty set. Suppose that d 
is a mapping from X  X → E, satisfies, 
i) d (x, y) > 0,  x, y  X 
ii) d (x, y) = 0 if and only if x = y 
iii) d (x, y) = d (y, x),  x, y  X 
iv) d (x, y) < d (x, z) + d (z, y),  x, y, z  X  

Then d is called a cone metric on X and (X, d) is 
called cone metric space. 

Definition: Let X be a nonempty set. Suppose the 
mapping d : X  X → E, satisfies  
i) o < d (x, y);  x, y  X and d (x, y) = 0 if and only if  

x = y. 
ii) d (x, y) = d (y, x),  x, y  X. 
iii) d (x, y) < d (x, w) + d (w, z) + d (z, y),   x, y  X 

and for all distinct point w, z   X - {x, y} [rectan-
gular property] 

Then d is called a cone rectangular metric on X, and 
(X, d) is called a cone rectangular metric space.  

Definition: Let {xn} be a sequence in (X, d) and x  
(X, d). If for every c  E, with 0 << c there is no  N 

such that for all n > no, d (xn, x) << c, then {xn} is said 
to be convergent and converges to x.  
i.e.                        lim nn

x x


  

Definition: A sequence (xn) is said to be Cauchy in X 
if for c  E with o << c there is no  N such that for 
all n, m > no, d (xn, xm) << c then {xn} is called Cauchy 
sequence.  

Definition: A cone rectangular metric space is said to 
be complete cone rectangular metric space if every 
Cauchy sequence in X is convergent. 
  
RESULTS:  
Theorem 1: Let (X, d) is a complete cone rectangular 
metric space and P is a normal cone with normal con-
stant K. Let f is self mapping from X into itself satis-
fying, 
d(fx,fу) ≤  ௗ(௫,௬)ା ௗ(௫,௙௫)

ଶ
 + β d(у,fу)  x, y  X, 

, β  (0, 1) and   0<



1

<1, Then f has an unique 

fixed point in X. 

Proof: Let xo  X be an arbitrary point in X. Let us 
take a sequence {xn} in X such that, 

xn+1 =  fxn  =  1
o

n
xf
   , n  N  {0}. 

Now substituting x = xo and y = x1 in inequality we 
obtain: 
     d(fxo, fx1) ≤  ௗ(௫బ ,   ௫భ)ା ௗ(௫బ ,௙௫బ )

ଶ
 + β d(x1,f x1) 

 d(x1, x2 ) ≤  ௗ(௫బ ,   ௫భ)ା ௗ(௫బ ,௫భ)
ଶ

 + β d(x1, x2) 
 d(x1, x2 ) ≤  d(x0, x1 ) + β d(x1, x2 ) 
 (1 – β )d(x1, x2 ) ≤  d(x0, x1 )  
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 d(x1, x2 ) ≤ 



1

 d(x0, x1 )          

Let us take 



1

 = h then from above inequality we 

obtain: 
d(x1, x2 ) ≤ h d(x0, x1 )                       --------------(1.1) 
Again for x = x1 and y = x2 in inequality we get, 
      d(fx1, fx2) ≤  ௗ(௫భ ,   ௫మ)ା ௗ(௫భ ,௙௫భ )

ଶ
 + β d(x1,f x1) 

      d(x2, x3) ≤  ௗ(௫భ ,   ௫మ)ା ௗ(௫భ ,௫మ )
ଶ

 + β d(x2,x3) 
 (1- β) d(x2, x3) ≤  d(x1, x2 )  

  d(x2, x3) ≤ 



1

 d(x1, x2 )  

  d(x2, x3) ≤ h2 d(x0, x1 )     ---------------(1.2)  
Continuing the same process we obtain in general for 
n  N, 

d(xn, xn+1) ≤ hn d(x0, x1                    --------------(1.3) 
Now for n > m we can find that, 
d(xn, xm) ≤ (hn-1 + hn-2 + hn-3 + hn-4 + hn-5 +------- hm ) 
d(x0, x1 )  
 d(xn, xm ) ≤

௛೘

ଵି௛
 d(x0, x1 )              ---------------(1.4) 

Taking the normality of Cone, (1.4) gives, 
   ‖ d(xn, xm )‖ ≤ K ‖ ௛೘

ଵି௛
 d(x0, x1 ) ‖ 

 ‖ d(xn, xm )‖ ≤ K ‖ ௛೘

ଵି௛
 ‖‖d(x0, x1 ) ‖-----------(1.5) 

Which yields, 
‖ d(xn, xm )‖ → 0 as n, m →∞  and ௛೘

ଵି௛
 → 0. 

Now we will claim that our inequality satisfies the 
rectangular property for finding the fixed point in X. 
Because of this we will calculate the following results.  
 For y  X we have, 
    d(fx,f2x) ≤  ௗ(௫,௙௫)ା ௗ(௫,௙௫)

ଶ
 + β d(fx,f2x) 

 (1- β)d(fx,f2x) ≤  d(x,fx) 

 d(fx,f2x) ≤  



1

d(x,fx)    ------------(1.6) 

Let us take 0< 



1

=h<1, then the inequality (1.6) 

gives, 
  d(fx,f2x) ≤  h d(x,fx)        --------------(1.7) 

Again we have, 
d(f2x,f3x) ≤  ௗ൫௙௫,௙మ௫൯ା ௗ൫௙௫,௙మ௫൯

ଶ
 + β d(f2x,f3x) 

 d(f2x,f3x) ≤ 



1

 d(fx,f2x) 

We have taking h = 



1

 

            d(f2x,f3x) ≤ h d(fx,f2x) 
 d(f2x,f3x) ≤ h hd(x,fx) 
 d(f2x,f3x) ≤ h2d(x,fx)     ---------------(1.8) 

Now continuing in this same technique we obtain in 
general for positive integer    

 d(fnx,fn+1x) ≤ hnd(x,fx)    ----------------(1.9) 
Now from rectangular property we have for x  X, 
d(fx,f4x) ≤d(fx,f2x) +  d(f2x,f3x) +  d(f3x,f4x)  
       d(fx,f4x) ≤hd(x,fx) + h2 d(fx,f2x) + h3d(f2x,f3x)  
       d(fx,f4x) ≤ ∑ ℎ௜ଷ

௜ୀଵ  d(x,fx) 
Similarly, 
       2 5 2 3 3 4 4 5d ,    d ,    d ,    d ,  f y f y f y f y f y f y f y f y  

 
< h2 d (y, fy) + h3d (y, fy) + h4d  (y, fy)

4

2
( , )i

i
h d y fy


       ------------------(1.10) 

Thus in general for n > m we obtain from Lemma of 
[4, 6] 

1 2 3( , ) ( ) ( , )n m n n n md f y f y h h h h d y fy       

( , )
1

mh d y fy
h




 

Now for xo = y  X,we obtain, 

( , ) ( , )
1

m
n m

o o o o
hd f x f x d x fx

h



 

 
1( , ) ( , )

1

m

n m o
hd x x d x x

h
 


 

Applying the normality of cone we obtain,   

1|| ( , ) || | | ( , ) ||
1

m

n m o
hd x x K d x x

h



 

Which implies that    ||d (xn,  xm)|| → 0 
 d (xn, xm ) → 0 

As X is complete cone rectangular metric space then 
there exists a point x in (X, d) such that, xn → x as n 
→ ∞ 
Now d (xn, fxn)  =  d (fxn+1,  fxn)  →  0  as n, m → ∞ 
Now d (xn+1, fxn+1)  =  d (fxn,  fxn+1) 

≤   
ௗ (௫೙ ,ೣ೙శభ)శ೏(ೣ೙ ,೑ೣ೙శభ)

ଶ
 + β d(xn+1,f xn+1) 

 d (xn+1,fxn+1)  ≤   
ௗ(௫ଷ೙ ,ೣ ೙శభ )శ೏(ೣ೙ ,ೣ೙శభ )

ଶ
        

                 +βd(xn+1,xn+2) 
 d (xn+1, fxn+1)  ≤   d (xn, xn+1)   + β d(xn+1,xn+2) 

d (xn+1,f xn+1)  (1-β ) ≤   d (xn, xn+1)  
Now letting n→∞ we obtain from the above inequali-
ty, 

d (x,f x)  (1-β ) ≤   d (x, x)  
  d (x,f x)  (1-β ) ≤ 0 

Now applying the normality of cone we have,  
(1 - 2 ) K||d (x, fx)|| < 0   

Which is a contradiction as (1-β ) ≥ 0 and d (x,f x)  ≥ 0 
therefore it is only possible that, 

  d (x,f x)  = 0  
  f x  = x          ----------------------(1.11) 

Hence x is a common fixed point of f in X. Now we 
will prove that x is unique. If possible let there exists 
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another fixed point x' of f in (X, d). 
fx' = x'   --------------------(1.12) 

Then d (x, x') =  d (fx, fx') 
d(x,x’) ≤  ௗ(௫,௫’)ା ௗ(௫,௙௫’)

ଶ
 + β d(x’,f x’) 

 d(x,x’) ≤  ௗ(௫,௫’)ା ௗ(௫,௫’)
ଶ

 + β d(x’,x’) 
 d(x,x’) ≤  d(x’,x’) 

(1 -  ) d(x,x’) ≤ 0 
Again applying the normality of cone we have, 

(1 - 2 ) K||d (x, x’)|| < 0   
 Again a contradiction as (1-β ) ≥ 0 and d (x,f x)  ≥ 0 
therefore it is only possible that, 
   d (x, x’)  = 0  

   x  = x’      ----------------------(1.13) 
Hence x is a unique common fixed point of f in X.  

Theorem 2: Let (X, d) is a complete cone rectangular 
metric space and P is a normal cone with normal con-
stant K. Let f and g are self mapping from X into itself 
satisfying, 
d(fx,gy) ≤  d(x,y) + βd(x,fx) + γ d(y,gy)  x,y  X 
and ,β, γ  ( 0,1) also (1- ) ,(1- β) , (1- γ) (0,1) 
and  ఈାఉ

ଵି ఊ
 (0,1)Then f an g has unique common fixed 

point in X. 

Proof: Let xo, yo are arbitrary point in X. Let us Con-
sider the sequences {xn} and {yn} in X such that, 
  xn = fxn-1 and xn+1  = gxn.  
Substituting x = xo and y = x1 in above inequality we 
obtain, 
   d(x1,x2) = d(fx0,gx1)  
               ≤  d(x0,x1) + βd(x0,fx0) + γ d(x1,gx1) 

 d(x1,x2) ≤  d(x0,x1) + βd(x0,x1) + γ d(x1,x2) 

(1- γ) d(x1,x2) ≤ ( + β)d(x0,x1) 

 d(x1,x2) ≤ ఈାఉ
ଵି ఊ

 d(x0,x1) 

 d(x1,x2) ≤ h d(x0,x1) 

Where 0< h = ఈାఉ
ଵି ఊ

<1                -------------------(2.1) 
Again we have for x2, x3 we have, 

 d(x2,x3) ≤ h2 d(x0,x1)       -------------------(2.2) 
Continuing similar method we get, 

 d(xn,xn+1) ≤ hn d(x0,x1)      -------------------(2.3) 
Now for n > m we can find that, 
d(xn, xm) ≤ (hn-1 + hn-2 + hn-3 + hn-4 + hn-5 +-------- hm ) 
d(x0, x1 )  
 d(xn, xm ) ≤

௛೘

ଵି௛
 d(x0, x1 )       ------------------(2.4) 

Taking the normality of Cone, (1.4) gives, 
‖ d(xn, xm )‖ ≤ K ‖ ௛೘

ଵି௛
 d(x0, x1 ) ‖ 

 ‖ d(xn, xm ) ‖ ≤ K ‖ ௛೘

ଵି௛
 ‖ ‖d(x0, x1 ) ‖   --------(2.5) 

Which yields, 

‖ d(xn, xm )‖ → 0 as n, m →∞  and ௛೘

ଵି௛
 → 0. 

Which shows that xn is a Cauchy sequence. 
As we have prove that the inequality of the theorem 
(1.1) is satisfies the rectangular property of Cone rec-
tangular Metric Spaces, Similarly we can established 
that the inequality of Theorem (2) also satisfies the 
rectangular property of Cone rectangular Metric Spac-
es.   

1( , ) ( , )
1

m

n m o
hd x x d x x

h
 

  

Applying the normality of cone we obtain,   

1|| ( , ) || | | ( , ) ||
1

m

n m o
hd x x K d x x

h



 

Which implies that    ||d (xn,  xm)|| → 0 
 d (xn, xm ) → 0 

As X is complete cone rectangular metric space then 
there exists a point          
x in (X, d) such that, xn → x as n → ∞ 
Now d (xn, fxn)  =  d (fxn+1,  fxn)  →  0  as n, m → ∞ 
Now d (fxn-1, xn+1)  =  d (fxn-1,  gxn+1) 

≤  d(xn-1,xn) + βd(xn-1,fxn-1) + γ d(xn+1,gxn+1) 
≤  d(xn-1,xn) + βd(xn-1,fxn-1) + γ d(xn+1,xn) 

Now letting as n → ∞ we have from the above in 
equality, 

d (fx, x) ≤  d(x,x) + βd(x,fx) + γ d(x,x) 
 d (fx, x) ≤ βd(x,fx) 
(1- β) d (fx, x) ≤ 0 which is not possible as  

(1- β) >0 and d (fx, x) ≥0.Thus only possible that  
d (fx, x) =0 that is implies that fx = x. Therefore we 
have that fx has the fixed x point in X. 
Again we have, 

d (xn, gxn)  =  d (fxn-1,  gxn) 
              ≤  d(xn-1,xn) + βd(xn-1,fxn-1) + γ d(xn,gxn) 
              ≤  d(xn-1,xn) + βd(xn-1,xn) + γ d(xn+1,xn) 
Now letting as n → ∞ we have from the above in 
equality, 

d (x,g x) ≤  d(x,x) + βd(x,x) + γ d(x,gx) 
 d (x,g x) ≤ γ d(x,gx) 
(1- γ) d (x, gx) ≤ 0 which is not possible as  

(1- γ) >0 and d (gx, x) ≥0. Thus only possible that d 
(gx, x) =0 that is implies that gx = x. Therefore we 
have that gx has the fixed x point in X. 
Hence f has the fixed point x in X and g has the fixed 
point x in X. 
i.e.                fx = x , gx = x      ------------------(2.6) 
Lastly we prove that f and g Has the unique fixed 
point in X. 
If possible let there existed another fixed point x΄ in 
X. 
 i.e.           f x΄ = x΄ , g x΄ = x΄     -----------------(2.7) 
Now we have from the inequality for x = x and y = x΄, 
d(x, x΄) = d(fx,gx΄) ≤  d(x,x΄) + βd(x,fx) + γ d(x΄,gx΄) 
which gives 
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d(x, x΄) ≤  d(x,x΄) + βd(x,x) + γ d(x΄,x΄) 
 d(x, x΄) ≤  d(x,x΄) 

 (1-) d(x, x΄) ≤ 0.  
Again a contradiction and hence it yields 
d(x, x΄) =0  

 x = x       ---------------------(2.8) 
Hence f and g has the unique common fixed point in 
X. 

Theorem 2.1: Let (X, d) is a complete cone rectangu-
lar metric space and P is a normal cone with normal 
constant K. Let f and g are self mapping from X into 
itself and f is commutes with g and satisfying the con-
dition, 

d(fx,gy) ≤  d(gx,gy) + βd(fx,gx) + γ d(fy,gy) 
x,y  X and ,β,γ ( 0,1)also  ఈାఉ

ଵି ఊ
 , (1-β- γ) and  

(1-) (1,0) Then f an g are unique common fixed 
point in X. 

Proof: Let xo be an arbitrary point in X. Let us Con-
sider the sequences {xn} in X such that, 
  xn = fxn-1 = gxn.  
Substituting x = xo and y = x1 in above inequality we 
obtain, 
   d(x1,x2) = d(fx0,gx1)  
             ≤  d(gx0,gx1) + β{d(fx0,gx0) +  d(fx1,gx1)} 

 d(x1,x2) ≤  d(x0,x1) + βd(x1,x0) + γ d(x2,x1) 
(1- γ) d(x1,x2) ≤ ( + β)d(x1,x0) 

 d(x1,x2) ≤  ఈାఉ
ଵି ఊ

 d(x1,x0) 
 d(x1,x2) ≤ hd(x1,x0) 

Where,  0< ఈାఉ
ଵି ఊ

 =h <1            ----------------- (2.1.1) 
Again we have for x = x1 and y = x2 
Continuing the same process we obtain, 
d(x2,x3) = d(fx1,gx2)  
             ≤  d(gx1,gx2) + β{d(fx1,gx1) +  d(fx2,gx2)} 

 d(x2,x3) ≤  d(x1,x2) + βd(x2,x1) + γ d(x3,x2) 
(1- γ) d(x2,x3) ≤ ( + β)d(x1,x2) 

 d(x2,x3) ≤ ఈାఉ
ଵି ఊ

 d(x1,x2) = h d(x1,x2) 
 d(x2,x3) ≤ h2 d(x0,x1)                -----------------(2.1.2) 
Continuing the same process we have for the positive 
integer n, 
 d(xn,xn+1) ≤ hn d(x0,x1)             -----------------(2.1.3) 
Now applying the normality of cone we obtain from 
the above inequality 
‖d(xn,xn+1)‖ ≤K ‖hn d(x0,x1) ‖         ---------------(2.1.4) 
Letting n →∞ we have from (2.1.4), 
 ‖d(xn,xn+1)‖ → 0 
  xn is a Cauchy sequence and since X is complete 
cone Rectangular Metric Spaces then xn converges to 
point x in X. 
Now we claim that our inequality satisfies the Rectan-
gular property. 

From rectangular property we have for x  X, 
d(fy,f4y) ≤d(fy,f2y) +  d(f2y,f3y) +  d(f3y,f4y) 

 d(fy,f4y) ≤hd(y,fy) + h2 d(fy,f2y) + h3d(f2y,f3y) 
 d(fy,f4y) ≤ ∑ ℎ௜ଷ

௜ୀଵ  d(y,fy) 
Similarly, 
       2 5 2 3 3 4 4 5d ,   d ,   d ,   d , f y f y f y f y f y f y f y f y  

   < h2 d (y, fy) + h3d (y, fy) + h4d  (y, fy) 
   

4

2
( , )i

i
h d y fy


  -------------(2.1.5) 

Thus in general for n > m and from Lemma of [4,6] 
1 2 3( , ) ( ) ( , )n m n n n md f y f y h h h h d y fy        

( , )
1

mh d y fy
h




 

Now for xo = y  X,we obtain, 

( , ) ( , )
1

m
n m

o o o o
hd f x f x d x fx

h



 

 
1( , ) ( , )

1

m

n m o
hd x x d x x

h
 


 

Applying the normality of cone we obtain,

1|| ( , ) || | | ( , ) ||
1

m

n m o
hd x x K d x x

h



 

Which implies that    ||d (xn,  xm)|| → 0 
 d (xn, xm ) → 0 

As X is complete cone rectangular metric space then 
there exists a point x in (X, d) such that, xn → x  as n 
→ ∞ 
Now d (xn, fxn)  =  d (fxn+1,  fxn)  →  0  as n, m → ∞ 
Now we established that f and g has the common 
fixed point. 
d (xn, gxn)  =  d (fxn-1,  gxn) 
≤  d(gxn-1,gxn) + βd(fxn-1,g xn-1) + γ d(f xn, gxn) 
≤  d(gxn-1,gxn) + βd(xn,gxn-1) + γ d(xn-1, gxn) 
Letting n → ∞ we obtain, 

d (x, gx) ≤ βd(x,gx ) + γ d(x, gx) 
 (1-β- γ)d (x, gx) ≤0 

Appling the normality of cone we obtain that, 
K‖(1-β- γ)d (x, gx)‖ ≤0 

Which is a contradiction of definition of Cone Rec-
tangular Metric Spaces and only possibility that, 

d (x, gx) = 0 
This implies that, 

    x= gx       ------------------------(2.1.6) 
That is g has a fixed point x in X. 
Similarly we can prove that f has an fixed point x in 
X. 

That is, x= fx. ----------------------- (2.1.7) 
Now we prove that f and g has a common fixed point 
in X. 
In the very beginning we have define for commutating 
mapping that, 

xn = fxn-1 = gxn 
Letting n→∞ and as X is a complete cone rectangular 
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metric spaces we obtain, 
lim௡→∞ ∞→lim௡ = ݊ݔ ݃∞→lim௡ =  ݊ݔ݂  ݊ݔ

 x = fx = gx   -----------------------(2.1.8) 
This shows that f and g has the common fixed point in 
X. 
Lastly we claim that f and g has unique common fixed 
point. 
For which we let f and g has another fixed point y in 
X. 

i.e.,  y = fy = gy     ------------------------(2.1.9) 
Therefore we have from the inequality defined in the-
orem, 
d(x,y) =d(fx,gy)  
           ≤  d(gx,gy) + βd(fx,gx) + γ d(fy,gy) 
 d(x,y) ≤  d(x,y) + βd(x,x) + γ d(y,y) applying the 
equations (2.1.8),(2.1.9) 

 d(x,y) ≤  d(x,y) 
(1-) d(x,y) ≤ 0 

Applying the normality of cone metric spaces we ob-
tain, 

K‖(1-) d(x,y)‖ ≤ 0 
Which is a contradiction and only possibility that x =y. 
Hence f and g has the unique common fixed x point in 
X.  

Theorem 2.2: Let (X, d) is a complete cone rectangu-
lar metric space and P is a normal cone with normal 
constant K. Let f, g and h are self mapping from X 
into itself and f is commutes with g and h satisfying 
the condition, 
d(fx,fy) ≤ d(gx,gy) + βd(fx,gx) + γd(fy,gy)  
              + σ d(fx,hx)  x,y  X and ,β,γ( 0,1)also  

ఈି ఉ
ଵି ఊିఋ

 and (1-)(1,0) Then f, g and h are unique 
common fixed point in X. 

Proof: Let xo be an arbitrary point in X. Let us Con-
sider the sequences {xn} and {yn} in X such that, 
  yn = fxn-1 = gxn, 
and,            yn+1

= fxn = hxn+1, 
Now we have from the inequality defined above for x 
= xn-1 and y = xn 
d(yn, yn+1

) =d(fxn-1, fxn) 
≤  d(gxn-1,gxn ) + β d(f xn-1,gxn-1) + γ d(fxn,gxn) + σ 
d(fxn,hxn) 
≤  d(yn-1,yn ) + βd(yn,yn-1) + γ d(yn+1,yn) + σ d(yn+1,yn) 

 d(yn, yn+1
)(1-γ-σ) ≤ (�+β)d(yn-1,yn ) 

 d(yn, yn+1
) ≤ ఈା ఉ

ଵି ఊିఋ
d(yn-1,yn ) 

Taking h=  ఈି ఉ
ଵି ఊିఋ

   we have from above inequality, 
d(yn, yn+1

) ≤ hd(yn-1,yn )      --------------------(2.2.1) 
For m>n we have, 
Now from the triangular property of cone metric spac-
es we have for m>n 

d(yn, yn+p) ≤ d(yn, yn+1) + d(yn+1, yn+p) 
  ≤ d(yn, yn+1) + d(yn+1, yn+2) +  d(yn+2, yn+p)  
  ≤ d(yn, yn+1) + d(yn+1, yn+2) +  d(yn+2, yn+3)+  d(yn+3, yn+p) 
 ≤ d(yn, yn+1) + d(yn+1, yn+2) +  d(yn+2, yn+3)  +  d(yn+3, 
yn+4) ……………d(yn+p-1, yn+p) 
 ≤ ( hn + hn+1 + hn+2 + hn+3 ……..……  + hn+p ) d(y0, y1)  
  ≤ hn ( 1+ h + h2 + h3 ……..……   + hp ) d(y0, y1 ) 
 d(yn, yn+p ) ≤

௛೙

ଵି௛
 d(y0, y1 )              -------------(2.2.2) 

Taking the normality of Cone, (1.5) gives, 
‖ d(yn, yn+p )‖ ≤ K ‖ ௛೙

ଵି௛
 d(y0, y1 ) ‖ 

 ‖ d(yn, ym )‖ ≤ K ‖ ௛೙

ଵି௛
 ‖ ‖d(y0, y1 ) ‖ --------(2.2.3) 

Which yields, 
‖ d(yn, ym )‖ → 0 as n, n+p →∞  and ௛೙

ଵି௛
 → 0. 

  yn is a Cauchy sequence and since X is complete 
cone Rectangular Metric Spaces then yn converges to 
point y in X. 
Similarly we can claim that our inequality satisfies the 
Rectangular property. 
Now we prove that fy and gy has a common fixed 
point in X. 
Now we have from the inequality, 
 d(fxn-1,yn+1) = d(fxn-1,fxn) 
                ≤ d(gxn-1,gxn) + βd(fxn-1,g xn-1) + γd(fxn,gxn) 
                 + σ d(fxn-1,h xn-1) 
 d(fxn-1,yn+1) ≤  d(gxn-1,gxn) + βd(fxn-1,g xn-1)  
                         + γd(fxn,gxn) + σ d(fxn-1,h xn-1) 
 d(fxn-1,yn+1) ≤ d(yn-1,yn) + βd(fxn-1,yn-1) + γd(fxn-

1,yn) + σ d(fxn-1,yn-1) 
 Now letting n →∞ we obtain, 
d(fy,y) ≤ d(y,y) +β d(fy,y) + γ d(f y,y) + σ d(f y,y) 
This gives, 

d(fy,y){1- (β+γ+δ)} ≤0   -------------------(2.2.4) 
Which is a contradiction of definition of cone rectan-
gular metric spaces and as {1- (β+γ+δ)}  (0, 1) and 
hence we have, 
d(fy,y) = 0 

  fy = y                       ---------------------(2.2.5) 
Similarly we can show that, 

gy =  y                              --------------------(2.2.6) 
Therefore we can conclude that f and g has the com-
mon fixed point y in X. 
Lastly we claim that y is unique. 
If possible late y is not unique. Let y is another fixed 
point of f and g in X. 
i.e. f y = y and gy = y    ----------------------(2.2.7) 
Now we have from the inequality condition, 
d(fy,fy) ≤  d(gy,gy) + βd(fy,gy) + γd(fy,gy) + σ 
d(fy,hy) 
 d(y,y) ≤  d(y,y) + βd(y,y) + γd(y,y) + σ d(y,y) 
 d(y,y)(1-) ≤ 0 
Again a contradiction and hence only possibilities 
that, 
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d(y,y) =  0 
 y = y     ---------------------------(2.2.8) 

Hence y is the unique common fixed point of f, g and 
h in X. 
 
CONCLUSION: In this research paper we have Re-
alize that the self mappings f, g and the Commutating 
mappings f, g, h satisfies the concept of Banach fixed 
point condition and Cone rectangular inequality. All 
the self mapping and commutative mappings are an 
effective part to find out the existence of fixed point 
on complete cone Rectangular metric spaces 
 
REFERENCES: 
1. D. Ilic and V. Rakocavic (2008) Common fixed 

for maps on cone metric space, J. Math. Anal. 
Appl., 341, 876-882. 

2. G. Jungck (1976) Commutating mappings and 
fixed points, J. Amar. Math. Soci. Trans. Amar. 
Math. Soci., 201-203. 

3. H. Lakzian (2009) Some fixed point Theorem in 
Cone Metric Spaces With w-Distance, Int. J. 
Math. Anal., 3(22), 1081-1086. 

4. Hung Long-Guang & Zhang xian (2007) Cone 
metric Spaces and Fixed Point Theorems of Con-
tractive Mappings, J. Math. Anal. Appl., 332, 
1468-1476. 

5. K. Jha (2009) A Common Fixed Point theorem in 
A cone Metric Space; Kathmandu University, 
Journal of Science, Eng. and Tech., 5(1),1-5. 

6. L. G. Huang and X. Zhang (2007) Cone metric 
spaces and fixed point theorems of contractive 
mappings, J. Math. Anal. Appl., 332, 1468-1476. 

7. M. Abbas and G. Jungek (2008) Common fixed 
point results for non commuting mapping without 
continuity in cone metric spaces, J. Math. Anal. 
Appl., 341, 415 - 420. 

8. P. Raja and S. M. Vazepur (2008) Some Exten-
sions of Banach’s contractionPrinciple in Com-
plete Cone Metric Spaces, Hondai Pub. Corp., 
Fixed Point Theory and Appl., Article Id768294. 

9. P. Raja and S. M.Vazepur; Some fixed point theo-
rems in complete cone metric spaces.(Submitted). 

10. P.Raja and S.M.Vazepur; Fixed point theorems for 
certain contractive mappings in complete cone 
metricspaces (Submitted).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


