

Results on Fixed Points for Multivalued Mappings on an Orbitally Complete Metric Space

J. K. Verma^{1*} & P. P. Mishra²

^{1&2} Department of Mathematics, Govt. P. G. College, Panna, Madhaya Pradesh, INDIA ^{*} Correspondence: E-mail: <u>jk.verma87@yahoo.com</u> & <u>mishrapp@yahoo.com</u>

(Received 16 Mar, 2015; Accepted 19 Mar, 2015; Published 21 Mar, 2015)

ABSTRACT: In this paper, we prove fixed point theorem for multivalued mappings on an orbitally complete metric space which include the results of Achari¹ and Jain and Bohre⁵.

Keywords: Multivalued map and orbitally complete metric space.

INTRODUCTION: Kakutani⁶ initiated the study of fixed point problems of multivalued functions in 1941 in finite dimensional spaces. It was extended to infinite dimensional Banach spaces by Bohnenblust and Karlin² in 1950.

Nadler⁹ introduced the notion multivalued contraction mappings in metric spaces. Singh and Dubey¹⁵ extended the result of Kannan to multivalued mappings which was unified by Reich¹³. All these results were generalized by Iseki⁴. Popa¹⁰ obtained a common fixed point theorem for a sequence of multifunction's on a complete metric space which includes the results of Rus¹⁴, Ray^{11 & 12} and Wong¹⁷.

Kaneko⁷ extended the concepts of weak commutativity and compatibility see Kaneko et al.⁸ for single-valued mappings to the setting of single-valued and multi-valued mappings respectively.

Preliminiries: Let (X,d) be a metric space and B(X) be the set of all bounded subset of X.

For any $x \in X$, A, B $\in B(X)$, we write

 $d(x, A) = \inf \{ d(x, a) : a \in A \}$

 $\delta(A, B) = \sup \{ d(a, b) : a \in A, b \in B \}.$ The function δ satisfies

- (i) $\delta(A, B) = \delta(B, A) \ge 0, \ \delta(A, B) = 0$ $\Rightarrow A = B = \{a\},$ (ii) $\delta(A, B) \le \delta(A, C) + \delta(C, B)$
- (ii) $\delta(A, B) \le \delta(A, C) + \delta(C, B)$ for A, B, C \in B(X).

If $A = \{a\}$,

we write $\delta(A, B) = \delta(a, B)$ and furthermore, if $B = \{b\}$,

we write
$$\delta(A, B) = \delta(a, b) = d(a, b)$$
.

Definition 1: A sequence $\{A_n\}$ of sets in B(X) is said to converge to the subset A of X if the following conditions are satisfied:

- (i) For each a in A, there is a sequence $\{a_n\}$ such that $a_n \in A_n$ for all n and $a_n \rightarrow a$
- (ii) For every $\varepsilon > 0$, there is an integer N such that $A_n \subset A_{\varepsilon}$ for all $n \ge N$, where A_{ε} is the union of all open spheres with centers in A and radius ε .

The set A is then said to be the limit of the sequence $\{A_n\}$ and we write $\lim A_n = A$.

Definition 2: A multivalued mapping (or set valued mapping) F on X into X is a point to set correspondence $x \rightarrow Fx$ such that Fx is a non-empty bounded subset of X for each $x \in X$. We denote such a mapping by F: $X \rightarrow B(X)$ (or CB(X)).

Definition 3: A multivalued map $F : X \to B(X)$ is said to be *continuous* at $x \in X$ if $x_n \to x$ in X implies $Fx_n \to Fx$ in B(X). F is continuous on X if F is continuous at every point of X.

An orbit of F at a point $x_0 \in X$ is a sequence $\{x_n\}$ in X given by

$$O(F, x_0) = \{x_n : x_n \in Fx_{n-1}, n = 1, 2, 3, \dots\}$$

Definition 4: A metric space X is said to be Forbitally complete if every Cauchy sequence which is a subsequence of an orbit of F at each point $x \in X$ converges to a point of X.

Definition 5: A single valued mapping T of X into X is *orbitally continuous* on X if for each $x \in X$, $\lim_{n\to\infty} T^{n_i} x = u$ implies $\lim_{n\to\infty} T(T^{n_i} x) = Tu$.

Definition 6: A point $x \in X$ is said to be a fixed point of a multivalued map $F: X \to B(X)$ is $x \in F(X)$ The following fixed point theorem was proved by Achari¹ for Ciric type maps³. **Theorem A (Achari¹):** Let X be an T-orbitally complete metric space and T be an orbitally continuous self-mapping of X satisfying

(A) min {d(Tx, Ty) d(x, y), d (x, Tx) d(y, Ty)} – min {d(x, Tx) d(x, Ty), d (y, Ty) d(y, Tx)} $\leq q d(x, y)$ min {d(x, Tx), d(y, Ty)}

for all x, $y \in X$, 0 < q < 1, $d(x, Tx) \neq 0$ and $d(y, Ty) \neq 0$.

Then for each $x \in X$, the sequence $\{T^n x\}_{n=1}^{\infty}$ converges to a fixed point of T.

Using the technique of Taskovic [16], Jain and Bohre [5] generalized the above result as follows:

Theorem B (Jain and Bohre⁵): Let X be an Forbitally complete metric space and T be an orbitally continuous self-mapping of X satisfying

(B) $\alpha_1 d(Tx, Ty) d(x, y) + \alpha_2 d(x, Tx) d(y, Ty) - min$ ${d(x, Tx) d(x, Ty), d(y, Ty) d(y, Tx)} \le \beta d(x, y)$ $min {d(x, Tx), d(y, Ty)}$

for all x, $y \in X$, $d(x, Tx) \neq 0$ and $d(y, Ty) \neq 0$, where α_1, α_2 and β are real numbers with $\alpha_1 + \alpha_2 > \beta$ and $\beta - \alpha_2 \geq 0$. Then for each $x \in X$, the sequence $\{T^n x\}_{n=1}^{\infty}$

converges to a fixed point of T.

RESULTS: We prove the following:

Theorem: Let X be F-orbitally complete metric space and F: $X \rightarrow B(X)$ be continuous mapping satisfying

(1) $\alpha_1 \, \delta(\overline{F} x, \overline{F} y)^r \, d(x, y) + \alpha_2 \, \delta(x, \overline{F} x) \, \delta(y, \overline{F} y)^r - \min\{d(x, \overline{F} x)$

d(x, \overline{F} y), d(y, \overline{F} y)^r d(y, \overline{F} x)} $\leq \beta d(x, y) d(y, \overline{F} y)^{r-1}$ min {d(x, \overline{F} x), d(y, \overline{F} y)}

for all x, $y \in X$, where $r \ge 1$ is an integer, $d(x, Fx) \ne 0$ and $d(y, \overline{F}y) \ne 0$, α_1 , α_2 and β are real numbers with $\alpha_1 + \alpha_2 > \beta$ and $\beta - \alpha_2 \ge 0$, then there exists $x \in X$ such that $x \in \overline{F}x$ where \overline{F} denotes the closure of F. If F is a point closed mapping, then F has fixed point.

Proof: Let $x_o \in X$ be an arbitrary point is X. Define sequence $\{x_n\}$ in X by

 $x_1 \in \overline{F} x_0, \quad x_2 \in \overline{F} x_1, \dots, x_n \in \overline{F} x_{n-1}.$

Let us suppose that $d(x_n, \overline{F} x_n) > 0$ for all n = 0, 1, 2, ... (Otherwise for some positive integer $n, x_n \in \overline{F} x_n$). Applying the condition(1) for $x = x_{n-1}$ and $y = x_n$, we have;

 $\begin{array}{l} \alpha_{1} \ \delta(\ \overline{F} \ x_{n-1}, \ \overline{F} \ x_{n})^{r} \quad d(x_{n-1}, \ x_{n}) + \ \alpha_{2} \ \delta(x_{n-1}, \ \overline{F} \ x_{n-1}) \\ \delta(x_{n}, \ \overline{F} \ x_{n})^{r} - \min \ \{d(x_{n-1}, \ \overline{F} \ x_{n-1}) \ d(x_{n-1}, \ \overline{F} \ x_{n}), \ d(x_{n}, \ \overline{F} \ x_{n}), \ d(x_{n}, \ \overline{F} \ x_{n}) \} \\ \leq \ \beta \ d(x_{n-1}, \ x_{n}) \ d(x_{n}, \ \overline{F} \ x_{n})^{r-1} \ \min \ \{d(x_{n-1}, \ \overline{F} \ x_{n})\} \end{array}$

 $\begin{array}{l} \text{or, } \alpha_1 \ d(x_n, \, x_{n+1})^r \ d(x_{n-1}, \, x_n) + \alpha_2 \ d(x_{n-1}, \, x_n) \ d(x_n, \, x_{n+1})^r - \\ \min \ \{ d(x_{n-1}, \, x_n) \ d(x_{n-1}, \, x_{n+1}), \ d(x_n, \, x_{n+1})^r \ d(x_n, \, x_n) \} \le \beta \\ d(x_{n-1}, \, x_n) \ d(x_n, \, x_{n+1})^{r-1} \ \min \{ d(x_{n-1}, \, x_n), \ d(x_n, \, x_{n+1}) \} \end{array}$

or, $(\alpha_1 + \alpha_2) d(x_n, x_{n+1})^r d(x_{n-1}, x_n) - \min_{\substack{n \le 1 \ n < 1}} \{ d(x_{n-1}, x_n) \\ d(x_{n-1}, x_{n+1}), 0 \} \le \beta d(x_{n-1}, x_n) d(x_n, x_{n+1})^{r-1} \min_{\substack{n \le 1 \ n < 1}} \{ d(x_{n-1}, x_n) \\ d(x_n, x_{n+1}) \}$

or, $(\alpha_1 + \alpha_2) d(x_n, x_{n+1})^r d(x_{n-1}, x_n) \le \beta d(x_{n-1}, x_n) d(x_n, x_{n+1})^{r-1} \min \{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \}$

or, $(\alpha_1 + \alpha_2) d(x_n, x_{n+1})^r \le \beta d(x_n, x_{n+1})^{r-1} \min \{d(x_{n-1}, x_n) d(x_n, x_{n+1})\}$

or, $(\alpha_1 + \alpha_2) d(x_n, x_{n+1}) \le \beta \min_{\alpha} \{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \}$

or,
$$d(x_n, x_{n+1}) \leq \frac{p}{(\alpha_1 + \alpha_2)} \min \{ d(x_{n-1}, x_n), d(x_n, x_n) \}$$

 x_{n+1} = k min{d(x_{n-1}, x_n), d(x_n, x_{n+1})} where;

$$k = \frac{\beta}{(\alpha_1 + \alpha_2)} < 1.$$

Now, if $d(x_{n-1}, x_n)$ is minimum, then we get; $d(x_n, x_{n+1}) \le k d(x_{n-1}, x_n)$ and if $d(x_n, x_{n+1})$ is minimum, then we have; $d(x_n, x_{n+1}) \le k d(x_n, x_{n+1})$ which is contradiction, since k < 1

So we obtain; $d(x_n, x_{n+1}) \le k d(x_{n-1}, x_n)$.

Proceeding in this manner we obtain;

 $\begin{array}{ll} d(x_n, \, x_{n+1}) \leq k \, \, d(x_{n-1}, \, x_n) \, \leq \, k^2 \, d(x_{n-2}, \, x_{n-1}) \leq \ldots \ldots \leq k^n \\ d(x_0, \, x_1). \end{array}$

Since 0 < k < 1, it follows that $\{x_n\}$ is a Cauchy sequence in X and since X is orbitally complete, there is a point $x \in X$ such that $x_n \rightarrow x$. Now the continuity of F implies that $Fx_n \rightarrow Fx$ in B(X).

It remains to show that d(x, Fx) = 0 that is $x \in Fx$. Suppose $y \in \overline{F}x$, then for any n,

 $d(x,\,y) \leq d(x,\,x_n) + d(x_n,\,y) \label{eq:dispersive}$ and therefore,

 $d(x, Fx) \leq d(x, x_n) + d(x_n, Fx).$

Since $x_n \to x$, for given $\varepsilon > 0$ we can choose an N_1 such that $d(x_n, x) < {^{\varepsilon}/_3}$ for all $n \ge N_1$. On the other hand, since $Fx_n \to Fx$, for the same ε we can choose an N_2 such that

$$\operatorname{Fx}_{n-1} \subset \operatorname{A}_{\varepsilon/3} = \bigcup_{x \in \operatorname{Fx}} S\left(a, \frac{\varepsilon}{3}\right)$$

for all $n-1 \ge N_2$. Further, since $x_n \in \overline{F} x_{n-1}$, there exists a $y \in Fx_{n-1}$ such that

$$d(x_n, y) < \frac{\varepsilon}{3}$$
 and $y \in Fx_{n-1} \subset \bigcup_{a \in Fx} S\left(a, \frac{\varepsilon}{3}\right)$

Implies that there exists an $a \in Fx$ such that d(a, y) < b

 $\frac{\varepsilon}{3}$. Thus;

$$d(x_n, Fx) \le d(x_n, a) \le d(x_n, y) + d(y, a)$$

$$<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}$$
$$=\frac{2}{3}\varepsilon,$$

for all $n-1 \ge N_2$. Let $N = max\{N_1, N_2\}$. Then;

$$d(x, Fx) \le d(x, x_n) + d(x_n, Fx)$$

$$< \frac{\varepsilon}{3} + \frac{2}{3} \varepsilon$$

$$= \varepsilon,$$

for all $n \ge N$ and so; $x \in Fx$, since ε is arbitrary. If F is a point closed mapping, i.e. Fx is closed for each $x \in X$, then $x \in Fx$ and therefore F has a fixed point. This completes the proof of Theorem 1.

Remark: If F is a single valued mapping T, r = 1 in Theorem 1 it reduces to Theorem B.

REFERENCES:

- **1.**Achari, J. (1979) Generalized multi-valued contractions and fixed points, *Rev. Roum. Math. Pureset Appl.*, 24(2), 179-182.
- **2.**Bohenblust, H. F. and Karline, S. (1950) On a theorem of Ville, contributions to the theory of games I, *Ann. Studies No. 4, Priceton*, 155-160.
- 3.Ciric, L. B. (1974) On some maps with a nonunique fixed point, *Publ. Inst. Math.*, 17(31), 52-58.
- **4.**Iseki, K. (1975) Multivalved contraction mappings in complete metric spaces, *Rend. Sem. Mat. Univ. Padova*, 53, 15-19.

- **5.** Jain, R. K. and Bohre, S. K. (1987) Fixed points of orbitally continuous mappings, The mathematics education, 21(4), 120-123.
- **6.** Kakutani, S. (1941) A generalizing of Brouwer's fixed point theorem, *Duke Math. J.*, 8, 457-459.
- **7.**Kaneko,H. (1988) A common fixed point of weakly commuting multivalued mappings, *Math. Japonica*, 33, 741-744.
- **8.**Kaneko, H and Sessa, S. (1989) Fixed point theorems for compatible multivalued and single-valued mappings, Internat., *J. Math. Sci.*, 12, 257-262.
- 9.Nadler, S. B. (1969) Multivalued contraction mappings, *Pacific J. Math.*, 30, 475-488.
- **10.** Popa, V. (1979) A common fixed point theorem for a sequence of multifunction, *Studia Univ. "Babes- Bolyal" Math.*, 24(2), 39-41.
- **11.** Ray, B. K. (1974) A note on multivalued contraction mappings, Atti. Acad. Naz. Lincei cl Soc. F is Mat. Natur 8 LVI, 4, 500-503.
- **12.** Ray,B. K. (1977) On Ciric's fixed point theorems, *Fund. Math.*, 4, 221-229.
- **13.** Reich, S. (1972) Fixed point of contractive functions, *Bull. Un. Mat. Ital.*, 4(26), 26-42.
- **14.** Rus, I. A. (1975) Fixed point theorems for multivalued mappings in complete metric space, *Math. Japonica*, 25, 21-24.
- **15.** Singh, S. P. and Dubey, L. S. (1970) On multivalued contraction mappings, *Bull. Mathematique*, 14(62).
- 16. Taskovik, M. R. (1976) Some results in the fixed point theory, *Publ. Inst. Math.*, 20(34), 231-242.
- 17. Wong, C. S. (1973) Common fixed points of two mappings, *Pacific J. Math.*, 48, 299-312.