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ABSTRACT: In this paper, we prove fixed point theorem for multivalued mappings on an orbitally complete metric
space which include the results of Achari' and Jain and Bohre®.
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INTRODUCTION: Kakutani® initiated the study of
fixed point problems of multivalued functions in 1941
in finite dimensional spaces. It was extended to infi-
nite dimensional Banach spaces by Bohnenblust and
Karlin® in 1950.

Nadler® introduced the notion multivalued contraction
mappings in metric spaces. Singh and Dubey®® ex-
tended the result of Kannan to multivalued mappings
which was unified by Reich™. All these results were
generalized by lseki®. Popa™ obtained a common
fixed point theorem for a sequence of multifunction’s
on a complete metric space which includes the results
of Rus **, Ray™ #*2 and Wong"’.

Kaneko’ extended the concepts of weak
commutativity and compatibility see Kaneko et al.
for single-valued mappings to the setting of single-
valued and multi-valued mappings respectively.

Preliminiries: Let (X,d) be a metric space and B(X)
be the set of all bounded subset of X.
Forany x € X, A, B € B(X), we write
d(x, A) = inf{d(x, a) : a € A}
(A, B) =sup {d(a, b) :a e A b e B}.
The function & satisfies

() (A, B)=08(B,A)>0,5(A,B)=0
= A=B={a},
(ii) 0(A,B) <3 (A, C)+3(C, B)
for A, B, C € B(X).
If A= {a},

we write 3(A, B) = 5(a, B) and furthermore,

if B = {b},

we write 8 (A, B) =9d(a, b) =d(a, b).

Definition 1: A sequence {A,} of sets in B(X) is said
to converge to the subset A of X if the following con-
ditions are satisfied:
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(i) Foreach a in A, there is a sequence {a,} such
that a, € A, forallnanda, > a

(if) For every ¢ > 0, there is an integer N such that A,
c A, for all n > N, where A, is the union of all
open spheres with centers in A and radius «.

The set Ais then said to be the limit of the sequence
{A.} and we write lim A,=A.
n—oo

Definition 2: A multivalued mapping (or set valued
mapping) F on X into X is a point to set correspond-
ence X — Fx such that Fx is a non-empty bounded
subset of X for each x € X. We denote such a map-
ping by F: X — B(X) (or CB(X)).

Definition 3: A multivalued map F :X — B(X) is said
to be continuous at x € X if x,— x in X implies
Fx, — Fx in B(X). F is continuous on X if F is contin-
uous at every point of X.
An orbit of F at a point X, € X is a sequence {X,} in
X given by

O, xo) ={Xn: Xn € FXn;, N=1,2,3,.....}

Definition 4: A metric space X is said to be F-
orbitally complete if every Cauchy sequence which is
a subsequence of an orbit of F at each point x € X
converges to a point of X.

Definition 5: A single valued mapping T of X into X
is orbitally continuous on X if for each x e X,
imT"x=u implies lim T(T" x) = Tu.

n—oo n—o0

Definition 6: A point x e X is said to be a fixed
point of a multivalued map F: X — B(X) isx eF(X)
The following fixed point theorem was proved by
Achari* for Ciric type maps®.
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Theorem A (Achari®): Let X be an T-orbitally com-

plete metric space and T be an orbitally continuous

self-mapping of X satisfying

(A) min {d(Tx, Ty) d(x, y), d (X, Tx) d(y, Ty)} - min
{d(x, Tx) d(x, Ty), d (y, Ty) d(y, TX)} < q d(x, y)
min {d(x, Tx), d(y, Ty)}

forall x,y € X, 0<q<1,d(x, Tx) = 0and d(y, Ty) =

0.

Then for each x e X, the sequence {T”x}(::1 converg-

es to a fixed point of T.

Using the technique of Taskovic [16], Jain and Bohre

[5] generalized the above result as follows:

Theorem B (Jain and Bohre®): Let X be an F-

orbitally complete metric space and T be an orbitally

continuous self-mapping of X satisfying

(B) az d(Tx, Ty) d(x, y) + o, d( X, Tx) d(y, Ty) — min
{d(x, Tx) d(x, Ty), d(y, Ty) d(y, T)} < B d(x, y)
min {d(x, Tx), d(y, Ty)}

forall x, y € X, d(x, Tx) = 0 and d(y, Ty) = 0, where

ou, o and B are real numbers with o, + o, > and p -

o, > 0. Then for each x e X, the sequence {T”x}(::l

converges to a fixed point of T.

RESULTS: We prove the following:

Theorem: Let X be F-orbitally complete metric space
and F: X — B(X) be continuous mapping satisfying
(1) 0a 8(Fx, Fy) d(x, y) + a2 8(x, Fx) 8(y, Fy)' -
min{d(x, Fx)

d(x, Fy), d(y, Fy)'d(y, Fx)} < d(x, y)d(y, Fy)"
min {d(x, Fx), d(y, Fy)}

for all x, y € X, where r> 1is an integer, d (X, l_:x) #
0and d(y, Fy) # 0, a1, a; and B are real numbers
with oy + o, > B and B - o, > 0, then there exists X €

X such that x € Fx where F denotes the closure of
F. If F is a point closed mapping, then F has fixed
point.
Proof: Let x, € X be an arbitrary point is X. Define
sequence {x,} in X by
X1 € l_:Xo, Xo El_:Xl,
Let us suppose that d(xn,l_:xn) >0foralln=0,1, 2,
...... (Otherwise for some positive integer n, X, F x,).
Applying the condition(1) for X=X,; and y=X,,
we have;
(5] 8(Exn—lx I:Xn)r d(Xn—lx_Xn) + o 6(X1—1: I:Xn—l)
8(Xn, FXp) = min {d(X.1, FXn1) d(Xo1 FXq), d(X,,
Fx)) d(Xn FXo0)}< B d(Xn-1, Xo) Ao, FXo)™ min
{d(Xn—I, FXn—l), d(Xn, FXn)}
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or, oy d(Xn, Xn+1)" d(Xn-1, Xn) + 02 A(Xn-1, Xn) d(Xn, Xn+1)" —
min {d(Xn.1, Xn) d(Xn-1, Xn+1), d(Xn, Xn+1)" d(Xn, %)} < B
d(Xn-1, Xn) d(Xn, xm)“1 min{d(Xn-1, Xn), d(Xn, Xn+1)}

or, (o1 + a2) d(Xn, Xns1)' d(Xn-1, Xn) = Min {d(Xn-1, Xa)
d(Xn-1, Xn+1), 0} < B d(Xn-1, Xn) d(Xn, xm)“1 min{d(X,.
1, Xn)l d(Xn, Xn+1)}

or, (o + o) d(Xn, Xne1)" d(Xne1, Xn) < B d(Xn1, Xn) d(Xo,
Xne1) " Min {d(X-1, Xa), d(Xn, Xns1)}

or, (o + 0g) d(Xn, Xns1)" < B d(Xny Xnsr)™ min {d(Xn1,
Xn) d(an Xn+1)}

or, (o + oz) d(Xn, Xn+1) < B Min {d(Xn-1, Xn), d(Xn, Xn+1) }

or, d(X,, Xps1) < L min {d(X,-1, Xn), d(Xn,
(0, +a,)
Xn+1)} = K min{d(Xa.1, Xn), d(Xn, Xn+1)}
where;
-_ P
(o, +a,)

Now, if d(X,.1, Xn) 1S minimum, then we get; d(Xn, Xn+1)
< K d(Xn-1, Xn) and if d(X,, Xq+1) IS minimum, then we
have; d(Xn, Xn+1) < K d(Xn, Xa+1) Which is contradiction,
sincek<1
So we abtain; d(X,, Xn+1) < K d(Xq-1, Xn).
Proceeding in this manner we obtain;
d(Xn, Xns1) < K d(Xo1, Xo) < K2 d(Xnz, X1) < ..o <K
d(Xo, X1).
Since 0 < k < 1, it follows that {x,} is a Cauchy se-
quence in X and since X is orbitally complete, there is
a point x € X such that x, — X. Now the continuity of
F implies that Fx, —> Fxin B(X).
It remains to show that d(x, FX) = O that is X e Fx.
Suppose y e F x, then for any n,
d(X, y) <d(X, X) + d(%, Y)

and therefore,

d(x, FX) <d(X, Xa) + d(Xn, FX).
Since x, — X, for given ¢ > 0 we can choose an N;
such that d(x,, X) < °/3 forall n> Nj. On the other
hand, since Fx, — Fx, for the same ¢ we can choose
an N, such that

Fxn1t c Az = U S(a, gj

xeFx

for all n-1 > N, . Further, since x, € F x,.1, there exists

ay e FXy.1 such that
US(a, Ej
3

acFx
Implies that there exists ana € Fx such that d(a, y) <

d(xn, y) < % andy € FX,.1 C

E. Thus;
3

d(Xn, FX) < d(Xn, @) < d(Xn, y) + d(y, a)
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€ €
< — +—
3 3
2
= —g,
3
for all n-1> N,. Let N = max{N N,}.
Then;
d(x, FX) < d(X, Xn) + d(X», FX)
€
< -+ — ¢
=g,

for alln> N and so; x e Fx, since ¢ is arbitrary.

If F is a point closed mapping, i.e. Fx is closed for
each x € X, then x € Fx and therefore F has a fixed
point. This completes the proof of Theorem 1.
Remark: If F is a single valued mapping T, r = 1 in
Theorem 1 it reduces to Theorem B.
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